

Heavy-duty Vehicle Platooning and Scheduling Swedish Handball

Jeffrey Larson

Argonne National Laboratory

February 18, 2014

Background

- 2012: Ph.D. in Applied Mathematics from University of Colorado Denver
 - Dissertation: Derivative-free Optimization of Noisy Functions
- 2012 2014: Postdoctoral Researcher, Department of Automatic Control, KTH Royal Institute of Technology
 - Present: Postdoctoral Researcher, Mathematics and Computer Science, Argonne National Laboratory
 - Heavy-duty Vehicle Platooning
 - Sports Scheduling
 - Derivative-free Optimization
 - Distributed Multi-agent Optimization
 - Tiled QR Factorization

Background

- 2012: Ph.D. in Applied Mathematics from University of Colorado Denver
 - ► Dissertation: Derivative-free Optimization of Noisy Functions
- 2012 2014: Postdoctoral Researcher, Department of Automatic Control, KTH Royal Institute of Technology
 - Present: Postdoctoral Researcher, Mathematics and Computer Science, Argonne National Laboratory
 - Heavy-duty Vehicle Platooning
 - Sports Scheduling
 - Derivative-free Optimization
 - Distributed Multi-agent Optimization
 - Tiled QR Factorization

Outline

Heavy-duty Vehicle Platooning

Sports Scheduling

Outline

Heavy-duty Vehicle Platooning

Sports Scheduling

Problem Statement

Goal

minimize Total Fuel Use such that Vehicles Arrive on Time

Using the fact that vehicles travelling in a platoon consume less fuel than when travelling independently

What is a Platoon?

What is a Platoon?

What is a Platoon?

Approximately 30% of an HDV's life costs is fuel.

Platooning Fuel Savings

Previous Work

- ▶ 1966 W. Levine and M. Athans, "On the Optimal Error Regulation of a String of Moving Vehicles"
- ▶ 1995 M. Zabat, N. Stabile, S. Farascaroli, F. Browand, "The Aerodynamic Performance Of Platoons" UC Berkeley: California Partners for Advanced Transit and Highways (PATH)
- ▶ 2010 T. Robinson, E. Chan, and E. Coelingh, "Operating Platoons on Public Motorways: An Introduction to the SARTRE Platooning Programme"

Fundamental Concept

Fundamental Concept

Difficult Problem

Local Controller

Catching Up

Pseudocode

Algorithm: Logic for the local controller

if Approaching HDVs can feasibly adjust their speeds to form a platoon then

if Test of sufficient savings then

Inform the HDVs to adjust their speeds to form a platoon

end

end

Pseudocode

Algorithm: Logic for the local controller

if Approaching HDVs can feasibly adjust their speeds to form a platoon then

```
if Test of sufficient savings then
Inform the HDVs to adjust their speeds to form a platoon end
```

end

Notation:

- ▶ Represent our network with a graph G = (V, E).
- ▶ Denote the control node s and let d_n be the destination for HDV n.
- Let D(i,j) be the fuel used travelling from vertex i to vertex j.
- ▶ Let m_n be the allowed detour for HDV n.
- Let η be the percentage of fuel saved by platooning.

Pseudocode

```
Algorithm: Savings calculation for two HDVs
N_s \leftarrow s; Best \leftarrow D(s, d_1) + D(s, d_2);
m_i \leftarrow 0 \ \forall i:
for \nu in V do
    if ((2-\eta)D(s,\nu)+D(\nu,d_1)+D(\nu,d_2) < Best) &
    (D(s, \nu) + D(\nu, d_1) < D(s, d_1) + m_1) \&
    (D(s, \nu) + D(\nu, d_2) < D(s, d_2) + m_2) then
        N_{c} \leftarrow \nu:
         Best \leftarrow (2 - \eta)D(s, \nu) + D(\nu, d_1) + D(\nu, d_2);
        Update m_1 or m_2 if needed;
    end
end
```

Savings = $D(s, d_1) + D(s, d_2) - Best$;

Savings

Savings

Savings

Increasing Possible Detours

Conclusion & Current Work

It is possible to reduce fuel use by 5% when coordinating 1000 HDVs on the German Autobahn.

Work is ongoing:

- Platooning when traffic is time dependent
- Accounting for breaks and legal requirements
- Continue with real-world experiments

- r = 0.2 km
 - ▶ 78 out of 875 vehicles platooned at least once during the day.
 - ▶ 0.16% of total fuel saved by the platooned vehicles.
 - ▶ 585 km platooning out of total 403,413 km driven.

- r = 0.2 km
 - ▶ 78 out of 875 vehicles platooned at least once during the day.
 - ▶ 0.16% of total fuel saved by the platooned vehicles.
 - ▶ 585 km platooning out of total 403,413 km driven.
- r=1 km
 - 241 out of 875 vehicles platooned at least once during the day.
 - 0.38% of total fuel saved by the platooned vehicles.
 - 4,369 km platooning.

- r = 0.2 km
 - ▶ 78 out of 875 vehicles platooned at least once during the day.
 - ▶ 0.16% of total fuel saved by the platooned vehicles.
 - ▶ 585 km platooning out of total 403,413 km driven.
- r = 1 km
 - ▶ 241 out of 875 vehicles platooned at least once during the day.
 - 0.38% of total fuel saved by the platooned vehicles.
 - 4,369 km platooning.
- ► r = 5 km
 - ▶ 778 out of 875 vehicles platooned at least once during the day.
 - ▶ 1.2% of total fuel saved by the platooned vehicles.
 - 43,325 km platooning.

Recent Grant

COMPANION EU Project: Cooperative Dynamic Formation of Platoons for Safe and Energy-optimized Goods Transportation

Scania, Volkswagen, KTH, OFFIS, IDIADA, S&T AS, Transportes Cerezuela

Pause

Questions?

Outline

Heavy-duty Vehicle Platooning

Sports Scheduling

Handball

Handball

Handball

Handball

Elitserien – Top Level of Swedish Handball

- ▶ 14-team league; owners want more than 26 games, but not 39
- Form 2 divisions which hold a single round-robin tournament
- Has standard requirements, so hopefully the results are useful
- Want a very fair home-away patterns in their schedule
- Desire a template which they can use on their own

Template

Home/Away Pattern Sets

- General scheduling is very hard
- ► A common simplifying method involves constructing home/away pattern (HAP) sets
- Desirable home-away patterns for each team

Home/Away Pattern Sets

- General scheduling is very hard
- ► A common simplifying method involves constructing home/away pattern (HAP) sets
- Desirable home-away patterns for each team

```
Team 1 AHAHA
Team 2 AAHAH
Team 3 AHHAH
Team 4 HAHAH
Team 5 HHAHA
Team 6 HAAHA
```


Home/Away Pattern Sets

- General scheduling is very hard
- ► A common simplifying method involves constructing home/away pattern (HAP) sets
- Desirable home-away patterns for each team

```
Team 1 AHAHA
Team 2 AAHAH
Team 3 AHHAH
Team 4 HAHAH
Team 5 HHAHA
Team 6 HAAHA
```

But not every HAP set is schedulable

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- If you end the first SRRT: away at team 1 and home for team 2, you start the next SRRT: away at team 2 and home for team 1
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. We don't want "HH" or "AA"
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- 4. Each division has an odd number of teams
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. Can't start "AHAAH"
- 6. Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- 6. Teams meeting 3 times: "AHA" or "HAH" (not "AAH" or "HHA")
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)

- 1. Each 7-team division must hold a SRRT to start the season.
- 2. This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

Previous Results

Two results from the literature apply

- ► Every n-team RRT, n even, must have at least n 2 breaks, DeWerra (1981)
- ► For an *n*-team RRT, *n* odd, there exists a unique no break tournament, Fronček (2005)

Previous Results

BAHAHAH **HBAHAHA АНАНАНАНАНА AHBAHAH АНАНАНАНАНН** HAHBAHA **АНАНАНАННАН AHAHBAH АНАНАНАНАН** HAHAHBA **АНАНАНАНАНАН AHAHAHB АНАННАНАНАН** AHHAHAHAHAH or BHAHAHA НААНАНАНАНА **ABHAHAH** НАНААНАНАНА HABHAHA НАНАНАНАНА НАНАНАНАНА **AHABHAH HAHABHA** НАНАНАНААНА **AHAHABH** НАНАНАНАНА HAHAHAB НАНАНАНАНАН

Constructing HAP Sets

```
BHAHAHAHAAHAHAHAHA...
HABHAHAHAHAHAHAHAHA|...
HAHABHAHAAHAHAHAHA...
HAHAHABHAHAHAHAHAAHAI...
A B H A H A H A H A H A H H A H A H ...
A H A B H A H A H A H A H A H A H A H ...
A H A H A B H A H A H A H A H A H A H ...
BAHAHAHAHAHAHAHAHHI...
A H B A H A H A H A H A H A H A H A H ...
A H A H A H B A H A H A H A H A H A H ...
HBAHAHAHAHAHAHAHAH...
HAHBAHAHAHAHAHAHAA...
HAHAHBA|HAHAHAHAHAH|...
```


Constraints

- 1. Each 7-team division must hold a SRRT to start the season.
- This must be followed by two SRRTs between the entire league, the second SRRT being a mirror of the first.
- 3. There must be a minimum number of breaks in the schedule.
- Each team has one bye during the season (to occur during the divisional RRT).
- 5. At no point during the season can the number of home and away games played by a team differ by more than 1.
- Any pair of teams must have consecutive meetings occur at different venues. (AVR)
- 7. Each division must have 3 pairs of complementary schedules.

Counting HAP Sets

Proposition

For an *n*-team tournament, $\frac{n}{2}$ odd, with a divisional RRT before full-league DRRT, there are

$$_{\frac{n}{2}}P_{\frac{n-2}{4}}\times\left(\frac{n+2}{4}\right)^3\times\frac{n-2}{4}!$$

unique HAP sets satisfying the requirements, except possibly for the AVR, with $\frac{n-2}{4}$ pairs of complementary schedules within each division.

Counting HAP Sets

Proposition

For an *n*-team tournament, $\frac{n}{2}$ odd, with a divisional RRT before full-league DRRT, there are

$$_{\frac{n}{2}}P_{\frac{n-2}{4}}\times\left(\frac{n+2}{4}\right)^3\times\frac{n-2}{4}!$$

unique HAP sets satisfying the requirements, except possibly for the AVR, with $\frac{n-2}{4}$ pairs of complementary schedules within each division.

For the 14-team Elitserien, this is 80640 HAP sets.

Example Violating AVR

By construction, every HAP Set can be scheduled in a manner satisfying the League Requirements, except possibly for the AVR.

Example Violating AVR

By construction, every HAP Set can be scheduled in a manner satisfying the League Requirements, except possibly for the AVR.

Simple Condition

For an arbitrary HAP set S, define

$$S(t,p) = \begin{cases} H : \text{if team } t \text{ plays home in period } p, \\ A : \text{if team } t \text{ plays away in period } p, \\ B : \text{if team } t \text{ has a bye in period } p. \end{cases}$$

Simple Condition

For an arbitrary HAP set S, define

$$S(t,p) = \begin{cases} H : \text{if team } t \text{ plays home in period } p, \\ A : \text{if team } t \text{ plays away in period } p, \\ B : \text{if team } t \text{ has a bye in period } p. \end{cases}$$

Proposition

For a HAP set S to be schedulable, for any two teams t_1 and t_2 in the same division, there must be two periods p_1 in Part I and p_2 in Part II such that

$$S(t_1, p_1) = H$$
 and $S(t_2, p_1) = A$, $S(t_1, p_2) = A$ and $S(t_2, p_2) = H$.

Efficiency of Simple Test

n	HAP sets	HAP removed by simple condition	% removed
6	24	8 (of 20 unschedulable)	40%
10	1080	396 (of 998 unschedulable)	$\approx 40\%$
14	80640	30720 (of 79024 unschedulable)	≈ 39 %

Another Necessary Condition

Another Necessary Condition

- ► Check if *i* or *j* is already "committed" to play another team in every period when they could possibly meet.
 - ▶ For example, if i can only play j in periods p_1 or p_2
 - i must play k_1 in p_1
 - ▶ j must play k_2 in p_2
- ► This is only slightly more expensive computationally to check than the simple condition, but it catches many "deeper" contradictions.
- ▶ This condition removes 46944 of the 80640 HAP sets (59%).

Latin Square Example

Team 1 AHAHA
Team 2 AAHAH
Team 3 AHHAH
Team 4 HAHAH
Team 5 HHAHA
Team 6 HAAHA

Latin Square Example

		Team 1 Team 2 Team 3 Team 4 Team 5	АННАН			
		Team 6	HAAHA			
	1	2	3	4	5	6
1						
2	[2,3,4,5]					
3	[3,4,5]	[2]				
4	[1,2,3,4,5]	[1]	[1,2]			
5	[1]	[1,2,3,4,5]	[1,3,4,5]	[2,3,4,5]		
6	[1,2]	[1,3,4,5]	[1,2,3,4,5]	[3,4,5]	[2]	

Efficiency of the Latin Square Approach

n	HAP sets	HAP removed by L.S. condition	% removed
6	24	20 (of 20 unschedulable)	100%
10	1080	998 (of 998 unschedulable)	100%
14	80640	75995 (of 79024 unschedulable)	≈ 96 %

Efficiency of the Latin Square Approach

	n	HAP sets	HAP removed by L.S. condition	% removed
_	6	24	20 (of 20 unschedulable)	100%
	10	1080	998 (of 998 unschedulable)	100%
	14	80640	75995 (of 79024 unschedulable)	≈ 96%

n	HAP sets	HAP removed "one pass"	% removed
6	24	10 (of 20 unschedulable)	50%
10	1080	504 (of 998 unschedulable)	$\approx 51\%$
14	80640	51946 (of 79024 unschedulable)	≈ 66%

Final Template

Additional Desires

Additional requests and concerns can be addressed when assigning teams to numbers:

- Venue availabilities
- Desired derby games
- More meetings between the top teams and between the bottom teams in the last weeks.

Summary

- We constructed (and counted) HAP sets with a minimum number of breaks
- We are able to remove many HAP sets as unschedulable with respect to the AVR
- We can then construct a template which can be agreed upon by the league owners
- We assign teams to numbers to construct a yearly schedule

Conclusion

We talked about:

- ► Vehicle Platooning
- Sports Scheduling

Conclusion

We talked about:

- Vehicle Platooning
- Sports Scheduling

We could have also talked about:

- DFO and Particle Accelerator Design
- Tiled QR Factorization
- Mathematics Outreach
- Optimizing the Movement of Coordinated Agents
- Non-Traditional Auctions
- Radiation Vault Design

Thank you for your time!

Questions?

jmlarson@anl.gov